Risktechnik
We Manage Risk Better

Home   |   Products   |   Risk Management   |   About Us   |   RM Blog 

 Follow us on  Twitter Icon Facebook Icon

  Large Risks 

  Fossil Fired Power Plant
  Hydro Electric Power Plant
 Nuclear Power Plant
  Wind Power Plants
  Solar Power Plants
 
  Structural Engineering Risks

  Road & Rail
  Channel Tunnel
  Airport Projects
  High Rise Structures
 Dam Construction 
  Risk Management 

  Metal Forming
  Metal Mining
  Metal Working
  Paint, Inks & Resin
  Milk Processing
  Paper Manufacturing
  Particle Board
  Petrochemical Plants

 

 

 

 

 

  Nuclear Power Plant

Nuclear power is any method of doing work that makes use of nuclear fission or fusion reactions. In its broadest sense, the term refers both to the uncontrolled release of energy, as in fission or fusion weapons, and to the controlled release of energy, as in a nuclear power plant. Most commonly, however, the expression nuclear power is reserved for the latter of these two processes.

The world's first exposure to nuclear power came when two fission (atomic) bombs were exploded over Hiroshima and Nagasaki, Japan, in August 1945. These actions are said to have brought World War II to a conclusion. After the war, a number of scientists and laypersons looked for some potential peacetime use for this horribly powerful new form of energy. They hoped that the power of nuclear energy could be harnessed to perform work, but those hopes have been realized only to a modest degree. Some serious problems associated with the use of nuclear power have never been satisfactorily solved. As a result, after three decades of progress in the development of controlled nuclear power, interest in this energy source has leveled off and, in many nations, declined.

Interest in nuclear power is accelerating worldwide. Although vested interests in the antinuclear movement are desperately trying to suppress these facts, nations outside the US-western Europe axis are avidly seeking nuclear power as both demonstrations of national competency, and as a carbonless electric power source able to mitigate climate change.China alone are building 11 reactors as of mid 2009, and plans to add 72 more. Iran, Korea (north & south), Finland, Egypt, India, Pakistan and other former peripheral nations will now dominate nuclear development, leaving the UK, the US, & the Euro-left states languishing in ill conceived political & technical stagnation.

A nuclear power plant produces electricity from nuclear energy. Nuclear energy is produced through the heat-generating "fission" process, in which neutrons split uranium atoms to create energy. This energy is used to make steam, which then powers generators to make electricity. Nuclear power plants use large amounts of water to carry heat, generate steam, and cool the nuclear reactor core. Plants are built next to a water source from which they can draw the water they need and return the water after use. The returned water is usually warm and may have some build up of heavy metals and salts. The water is not radioactive because it never comes in contact with radioactive materials.

Types of Nuclear Power Plant

Nuclear power plants differ from each other primarily in the methods they use for transferring heat produced in the reactor to the electricity-generating unit. Perhaps the simplest design of all is the boiling water reactor (BWR) plant. In a BWR plant, coolant water surrounding the reactor is allowed to boil and form steam. That steam is then piped directly to turbines, which spin and drive the electrical generator. A very different type of plant is one that was popular in Great Britain for many years—one that used carbon dioxide as a coolant. In this type of plant, carbon dioxide gas passes through the reactor core, absorbs heat produced by fission reactions, and is piped into a secondary system. There the heated carbon dioxide gas gives up its energy to water, which begins to boil and change to steam. That steam is then used to power the turbine and generator.

Important

The information set out in this document constitutes a set of general guidelines and should not be construed or relied upon as specialist advice. Independent legal advice should always be sought. Therefore Risktechnik accepts no responsibility towards any person relying upon these Risk Management Guides nor any liability whatsoever for the accuracy of data supplied by another party or the consequences of reliance upon it.

  Risk Management

  Abrasive Manufacturing
  Air Separation Technology
  Airports Risk
  Aluminium Smelting
  Automobile Manufacturing
 
  Risk Management

  Battery Manufacturing
  Cement Plants
  Ceramic Plants
  Combined Cycle Plants
  Distillery 
  Risk Management

  Edible Oil Refining
  Electronic Goods
  Fertilizer Plants
  Hospitals Risk
  Hotels Industry
  Software Industry
  Steel Plants
  Tank Farms
  Textile Mills
  Thermal Power
  Wind Mills

 

 


Main Site Navigation:
Home
   |   About Us   |  Disclaimer   Risk News   |   Contact Us

 Site Navigation:
Standard Fire & Special Peril Policy
   |  Marine Cum Erection All Risk   |   Contractor Plant & Machinery   |   Contractor All Risk   |   Machinery Breakdown
Marine Cargo
   |   Advance Loss of Profit   |   Fire Loss of Profit   |   Machinery Loss of Profit

© Copyright 2010 All Rights Reserved Risktechnik.com

Insurance Companies | Policies | Risk Blog | Sitemap